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USE OF NORMAL MESHES IN THREE-DIMENSIONAL IMAGING
Background
Three-dimensional imaging often requires three scalar
5 functions such as %, y, and z coordinates. These coordinates
define parameters of the surface so that the surface can be

visualized as a three dimensional image.

Summary
10 The present application teaches a new kind of way of
describing a three dimensional surface. The description is
called a “normal mesh”. The mesh has information which

defines information relative to a special tangent plane.

In one embodiment, the normal mesh is defined as a normal
15 offset from a coarser version. The mesh can be stored with a

single float per vertex, thus reducing the amount of

information which needs to be stored.

oid
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Brief Description of the Drawings

These and other aspects will now be described in

detail with reference to the accompanying drawings, in which:

Figure 1 shows how a smooth surface of three dimensions
can be described in terms of single variable scalars;

Figure 2 shows a polyline;

Figure 3 shows construction of a normal polyline;

Figure 4A shows a flowchart of forming a polyline;

Figure 4B shows a flowchart of overall operation of
compressing the surface;

Figures 5A-5F show the various stages of compressing a
sample surface, here a molecule;

Figure 6 shows a based domain vertext repositioning;

Figure 7 shows a piercing operation;

Figure 8 shows a face splitting operation to obtain
additional surface detail; and

Figure 9 shows a result of applying a naive piercing
procedure.

Detailed Description

Figure 1 shows how a smooth surface 100 can be locally
described by single variable scalar height functions, hji, hs,
hs, hy; over a tangent plane 110. When Eonsidered this way, the

three dimensional information for the smooth surface 100 is
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contained only in this single dimension h: the height over
the tangent plane. In practice, this approximation only works
infinitesimally. However, it may provide interesting
information.

Surfaces are often approximated using a triangle mesh.
However, this description may lose structural assumption that
are inherent in the actual surface. For example, some of the
smoothness assumption that one can make in an actual surface
may be lost in the triangle mesh. Hence, the triangle mesh
has inherent redundancy.

For a given smooth shape, different parameterizations may
still keep the geometry the same. In defining a mesh, the
present application notices that infinitesimal tangential
motion of a vertex does not change the geometry. However,
moving in the normal direction does change the geometry.

The normal meshes which are described herein require only
a single scalar value per vertex. This is may be done using a
multiresolution and local frame. A hierarchical
representation provides that all detail coefficients expressed
in these frames are scélar. The parameter may be a normal
component, for example. In the context of compression, for
example, this allows parameter information to be predicted and

confines residual error to the normal direction.



10

15

20

” Attorney@:ket No. 06618/580001

A curve in a plane can be defined by a pair of parametric
functions.

S)=(x@),y@)witht[0,]]. In the present embodiment,
polylines may be used to approximate curves.

Let /4(p,p') be the linear segment between the points p and

p . A polyline multiresolution approximation is made by
sampling the curve at points sj,x where sy = Sj+1,2k and

defining the jth level approximation as

v,
Li= S<i<y 1S58 )

To move from Lj to Ljy41, the points sj.1,2k41 are inserted (Figure
2, left). Clearly this requires two scalars: the two
coordinates of sj41,2k41. Alternatively one could compute the
difference sj41,2r+1 — m between the new point and some predicted
point m, for example, the midpoint of the neighboring points
s4,x and Sy, x+1. This detail has a tangential component m- b and
a normal component b-sjs;1,2x+1. The normal component represents
the geometric information while the tangential component the
parameter information.

Figure 2 shows removing one point (S¢+12+n) in a polyline
multiresolution and recording the difference with the midpoint

m. On the left a general polyline where the detail has both a
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normal and a tangential component. On the right is a normal
polyline where the detail is purely normal.

Polylines can hence be described with one scalar per
point if the parameter information is always zero, i.e., b =

5 m, in Figure 2B. If the triangle sj,x, Sj+1,2k+1s S3,k+1 1S
Isosceles, there is no parameter information.

Hence a polyline is “normal” if a multiresolution
structure exists where every removed point forms an Isosceles
triangle with its neighbors. Then there is zero parameter

10 information and the polyline can be represented with one

scalar per point, namely the normal component of the

associated detail.

Figure 3 shows construction of a normal polyline. We
start with the coarsest level and each time check where the

15 normal to the midpoint crosses the curve. For simplicity only

the indices of the sj,x points are shown and only certain
segments are subdivided. The polyline (0,0)-(2,1)-(3,3)-(1,1)-
o (0,1) is determined by its endpoints and three scalars, the
heights of the Isosceles triangles.
20

For a general polyline, the removed triangles are hardly
ever exactly Isosceles, and the polyline hence not normal. A
normal polyline approximation for any continuous curve using

the following techniques. The easiest is to start building
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Isosceles triangles from the coarsest level. The operation
starts with the first base 1l (sg,0,S0,1), see Figure 3. Next,
its midpoint is taken. A determination is made of where the
normal direction crosses the curve. Because the curve is
continuous, there has to be at least one such point. If there
are multiple points, any one point can be selected. This point
can be labeled as s;,;. The first triangle is defined using
this point. Now this process is repeated. Each time sj.1,2x+1 18
found where the normal to the midpoint of sj,x and s,k crosses
the curve. Thus any continuous curve can be approximated
arbitrarily closely with a normal polyline. The result is a
series of polylines L;, all of which are normal with respect
to midpoint prediction. Effectively each level is
parameterized with respect to the one coarser level. Because
the polylines are normal, only a single scalar value, the
normal component, needs to be recorded for each point. These
polylines may have no parameter information.

One can also consider normal polylines with respect to
other predictors. A base point and normal estimate can be
produced using the well known 4 point rule. Any predictor
which only depends on the coarser level is allowed. Irregular
schemes described in Daubechies, I., Guskov, I., and Sweldens,

W. Regularity of Irregular Subdivision. Constr. Approx. 15



10

15

20

" Attorney MCket No. 06618/580001

(1999), 381-426. can also be used. Levels may be built by
downsampling every other point, or using any other ordering.

Describing this in terms of further generality, a
polyline is normal if a removal order of the points exist such
that each removed point lies in the normal direction from a
base point, where the normal direction and base point only
depend on the remaining points.

Hence a normal polyline may be completely determined by a
single scalar component per vertex.

Normal polylines are closely related to certain well
known fractal curves such as the Koch Snowflake. The normal
coefficients can be thought of as a piecewise linear wavelet
transform of the original curve. Because the tangential
components are always zero, there may be half as many wavelet
coefficients as the original scalar coefficients. The
wavelets have their usual decorrelation properties.

A triangle mesh M is a pair (P,K), where P is a set of N
point positions P={P,.=(Xi,Y,.,Z,.)eR3\mid1£i£N}, and K is an
abstract simplicial complex which contains all the
topological, i.e., adjacency information. The complex K is a
set of subsets of {1,.,N}. These subsets come in three types:

vertices {i}, edges {i,j}, and faces {i,j,k}. Two vertices 1
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and j are neighbors if {Lj}el?. The l-ring neighbors of a
vertex I form a set V(i)={j/mid{i,j}eE}.

Definition of normal triangle meshes may be inspired by
the curve case. Consider a hierarchy of triangle meshes Mj
built using mesh simplification with vertex removals. These

meshes are nested in the sense that I?C:P.

- Take a removed

vertex P,eP, \P;. For the mesh to be normal we need to be

b

able to find a base point and normal direction N that only

depend on P;, so that P™* lies in the direction N. This leads

to the definition that a mesh M is normal in case a sequence
of vertex removals exists so that each removed vertex lies on
a line defined by a base point and normal direction which only
depends on the remaining vertices.

Thus a normal mesh can be described by a small base
domain and one scalar coefficient per vertex.

A mesh in general is not normal, just as a curve is in
general not normal. The present application therefore uses a
special kind of mesh, called a semi-regular mesh. The semi-
regular mesh has a connectivity which is formed by successive
gquadrasection of coarse base domain faces. The operation is
shown in Figure 4 at 440, the operation begins with a coarsest
level or base domain. If there are no new vertices, the

operation is complete at 410. For each new vertex determined
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at 405, a new base point is computed and a normal direction
are found at 415. A determination is made of where the line
defined by the base point and normal intersects the surface
420. 425 determines how many intersection points exist. If
only one point exists, it is accepted at 430. 1In the surface
situation, there might be no intersection point or many
intersection points, not all of which are correct.

If there are no intersection points, control passes to
the left. A fully normal mesh could not be built from this
base domain. Therefore, the definition of a normal mesh is
rearranged to allow a small number of cases where the new
points do not lie in the normal direction. The technique
needs to find a suitable non-normal direction in order to
proceed.

A smooth parameterization helps define the surface.
Several parameterization techniques have been proposed
including MAPS, patch wise relaxation, and specific smoothness
function, see, Dyn, N., Levin, D., and Gregory, J. A. A
Butterfly Subdivision Scheme for Surface Interpolation with
Tension Control. ACM Transactions on Graphics 9, 2 (1990),
160-169. Eck, M., DeRose, T., Duchamp, T., Hoppe, H.,
Lounsbery, M., and Stuetzle, W. Multiresolution Analysis of
Arbitrary Meshes. Proceedings of SIGGRAPH 95 (1995), 173-182.

; Lee, A. W. F., Dobkin, D., Sweldens, W., and Schroder, P.



10

15

20

‘. Attorney locket No. 06618/580001

Multiresolution Mesh Morphing. Proceedings of SIGGRAPH 99
(1999), 343-350; Levoy, M. The Digital Michelangelo Project.
In Proceedings of the 2nd International Conference on 3D
Digital Imaging and Modeling, October 1999.

Consider a region R of the mesh homeomorphic to a disc
that is to be parameterized onto a convex planar region B,
i.e., find a bijective map u:R—>B. The map u is fixed by a
boundary condition O0R—> 0B and minimizes a certain energy
functional. Several functionals can be used leading to, e.g.,
conformal or harmonic mappings. The disclosed system takes an
approach based on the parameterization scheme introduced by
Floater. In short, the function u needs to satisfy the

following equation in the interior:

)
u(Piy= ke VD o, u(Pk),

where V(1) is the 1-ring neighborhood of the vertex i and the
weights a, come from the Floater parameterization scheme
introduced by Floater. The Floater weights is that they are
always positive, which, combined with the convexity of the

parametric region, guarantees that no triangle flipping can

occur within the parametric domain. This is not true in

10
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general for harmonic maps which can have negative weights.
The iterative biconjugate gradient method is used to obtain
the solution to the system.

The overall image formation is shown in the flowchart of
Figure 4B. Figure 5 shows a highly detailed and curved model
of a molecule and these steps.

1. Mesh simplification: At 450, the Garland-

Heckbert simplification, based on half-edge collapses, is used
to create a mesh hierarchy (P;,K;). We use the coarsest level
(Py, Ky) as an initial guess for our base domain (Qg,Ko). The
first image, shown in Figure 5A, shows an image of the base
domain for the molecule. Note that this is relatively coarse.

2. Building an initial net of curves: At 460, an initial
set of curves 1s defined, to connect the vertices of the base
domain with a net of non intersecting curves on the different
levels of the mesh simplification hierarchy. This can be done
using the MAPS parameterization. MAPS uses polar maps to build
a bijection between a l-ring and its retriangulation after the
center vertex is removed. The concatenation of these maps is a
bijective mapping between different levels (Pj,K;) in the
hierarchy. The desired curves include the image of the base
domain edges under this mapping. Because of the bijection, no
intersection can occur. Note that the curves start and finish

at a vertex of the base domain. They need not follow the

11
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edges of the finer triangulation, 1.e., they can cut across
triangles. These curves define a network of triangular shaped
patches corresponding to the base domain triangles. Later
these curves will be adjusted on some intermediate level.
Again MAPS may be used to propagate these changes to other
levels. Figure 5B shows these curves for some intermediate
level of the hierarchy.

3. Fixing the global vertices: A normal mesh is almost
completely determined by the base domain. Selection of the
base domain vertices Qp may reduce the number of non-normal
vertices to a minimum. The coarsest level of the mesh
simplification P, is only a first guess.

At 460, the global vertices q; are respositioned with {1i}
€ K,. Constraint is imposed that the q; needs to coincide
with some vertex px of the original mesh, but not necessarily
Pi-

The repositioning is typically done on some intermediate
level j. Take a base domain vertex q; shown on the left in
Figure 6. We build a parameterization from the patches
incident to vertex q; to a disk in the plane €10, see
Figure 6. Boundary conditions are assigned using arc length
parameterization. Parameter coordinates are iteratively
computed for each level j vertex inside the shaded region.

The point q, may be replaced with any level point from P; in

12
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the shaded region. The new q,» may be the point of P; that in
the parameter domain is closest to the center of the disk.

Once a new position q,’” is chosen, the curves can be
redrawn by taking the inverse mapping of straight lines from
the new point in the parameter plane. This procedure may be
iterated. It may alternatively suffice to cycle once through
all base domain vertices.

User controlled repositioning may allow the user to
replace the center vertex with any P; point in the shaded
region. Parameterization may be used to recompute the curves
from that point.

Figure 5C shows the repositioned vertices. Notice how
some of them, like the rightmost ones have moved considerably.

Figure 6 shows base domain vertex repositioning with the
left showing original patches around q,, middle: parameter
domain, right: repositioned q, and new patch boundaries. This
is replaced with the vertex whose parameter coordinate are the
closest to the center. The inverse mapping (right) is used to
find the new position .’ and the new curves.

4. Fixing the global edges: The image of the global
edges on the finest level will later be the patch boundaries
of the normal mesh. For this reason, the smoothness of the
assoclated curves be improved at the finest level. 465

defines fixing global edges using a procedure similar to Eck,

13
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M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and
Stuetzle, W. Multiresolution Analysis of Arbitrary Meshes.
Proceedings of SIGGRAPH 95 (1995), 173-182. For each base
domain edge {i,k} region formed on the finest level mesh by

its two incident patches. Let 1 and m be the opposing global

vertices. A scalar parameter function p within the diamond-
shaped region of the surface is compiled. The boundary
condition is set as plqy) = play) =0, pla) =1, pla) = -1,

with linear variation along the edges. The parameterization
is compiled and its zero level set is the new curve. One
could iterate this procedure until convergence but in practice
one cycle may suffice. The curves of Figure 5D represent the
result of the curve smoothing on the finest level.

5. Initial parameterization: Once the global vertices
and edges are fixed the interior may be filled at 470. This
is done by computing parameterization of each patch to a
triangle while keeping the boundary fixed. The parameter
coordinates from the last stage can serve as a good initial
guess a smooth global parameterization is shown in the bottom
left of Figure 5E. Each triangle is given a triangular

checkerboard texture to illustrate the parameterization.

Figure 7 shows Upper left: piercing, the Butterfly point

is s, the surface is pierced at the point q, the

14
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parametrically suggested point v lies on the curve separating
two regions of the mesh. Right: parameter domain, the pierced
point falls inside the aperture and gets accepted. Lower left:
the parameterization is adjusted to let the curve pass through
gq.

6. Piercing: Piercing, at 475, piercing is used to start
building the actual normal mesh. Figure 7 shows the canonical
step for a new vertex of the semi-regular mesh to find its
position on the original mesh. In quadrisection, every edge
of level j generates a new vertex on level j+l. First, compute
a base point is computed using interpolating Butterfly
subdivision as well as an approximation of the normal. This
defines a straight line. This line may have multiple or no
intersection points with the original surface. The new vertex
g may lie halfway along the edge {a, e} with incident
triangles {a, e, b} and {e, a, d}, see Figure 7. Let the two
incident patches form the region R.

Build the straight line L defined by the base point s
predicted by the Butterfly subdivision rule and the direction
bf the normal computed from the coarser level points. All the
intersection points of L are found with the region R by
checking all triangles inside.

If there is no intersection the point v that lies midway

between the points a and ¢ in the parameter domain is taken:

15
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u(v) = (u(a)+u(e)) / 2. This is the same point a standard
parameterization based remesher would use.
In the case when there exist several intersections of the
mesh region R with the piercing line L we choose the
5 intersection point that is closest to the point u({v) in the
parameter domain. Let us denote by u(q) the parametric
coordinates of that piercing point. We accept this point as a
valid point of the semi-regular mesh if
[ata)-u(v) || <x | uta)-utv) |,
10 where ¥ is an "aperture" parameter that specifies how

much the parameter value of a pierced point is allowed to

deviate from the center of the diamond. Otherwise, the

piercing point is rejected and the mesh takes the point with

the parameter wvalue u(wv).

15 7. Adjusting the parameterization: Once there is a new

piercing point, we need to adjust the parameterization to
reflect this at 480. Essentially, the adjusted
parameterization u should be such that the piercing point has
the parameters u(v) = :u(q). When imposing such an isolated
20 point constraint on the parameterization, there is no
mathematical guarantee against flipping. Hence a new
pilecewise linear curve through u(g) in the parameter domain is
prepared. This gives a new curve on the surface which passes

through g, see Figure 7. The parameterization for each of the

16
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patches onto a triangle is separately computed. A piecewise
linear boundary condition, with the half point at q on the
common edge, 1s produced.

When all the new midpoints for the edges of a face of
level j are computed, the faces of level j+1 are found. This
is done by drawing three new curves inside the corresponding
region of the original mesh, as shown in Figure 8. Before that
operation happens we need to ensure that a valid
parameterization is available within the patch. The patch is
parameterized onto a triangle with three piecewise linear
boundary conditions each time putting the new points at the
midpoint. Then the new points are connected in the parameter
domain which allows us to draw new finer level curves on the
original mesh. This produces a metamesh similar to ** [14]
which replicates the structure of the semi-regular hierarchy
on the surface of the original. The construction of the semi-
regular mesh can be done adaptively with the error driven
procedure from MAPS [15]. An example of parameterization
adjustment after two levels of adaptive subdivision is shown
Figure b5F.

As the parametrization regions become smaller, the
starting guesses are better and the solver becomes faster.

Lazy parameter computation may be used, and the relaxation is

17
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run just before we actually need to use parameters for either
a point location or a surface curve drawing procedure.
Figure 8 shows a Face split: Quadrisection in the parameter

plane (left) leads to three new curves within the triangular

5 surface region(right).The aperture parameter Kk of the piercing
procedure provides control over how much of the original
parameterization is preserved in the final mesh. At ¥k = 0 a
mesh can be built based entirely based on the original global
parameterization. At Kk = 1 a purely normal mesh can be made

10 which is independent of the parameterization. The best results
may be achieved when the aperture was set low (0.2) at the

coarsest levels, and then increased to (0.6) on finer levels.

On the very fine levels of the hierarchy, where the geometry

of the semi-regular meshes closely follows the original

15 geometry, a naive piercing procedure without parameter

adjustment. Figure 9 illustrates such a Naive piercing
procedure. Clearly, several regions have flipped triangles and
are self-intersecting.
Figure 9 shows 4 levels of naive piercing for the torus
20 starting from a 102 vertex base mesh. Clearly, there are
several regions with flipped and self-intersecting triangles.

The error is about 20 times larger than the true normal mesh.
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Normal meshes have numerous applications. The following
are examples.
Compression Usually a wavelet transform of a standard
mesh has three components which need to be quantized and
5  encoded. Information theory tells us that the more non uniform
the distribution of the coefficients the lower the first order
entropy. Having 2/3 of the coefficients exactly zero will
further reduce the bit budget. From an implementation
viewpoint, the normal mesh coefficients may be connected to
10 the best known scalar wavelet image compreésion code.
Filtering It has been shown that applications such as

smoothing, enhancement, and denoising can simply be effected

through a suitable scaling of wavelet coefficients. In a
normal mesh any such algorithm will run three times as fast.

15 Also large scaling coefficients in a standard mesh will

introduce large tangential components leading to flipped
triangles. In a normal mesh this is much less likely to
happen.
Texturing Normal semi-regular meshes are very smooth
20 inside patches, across global edges, and around global
vertices even when the base domain is exceedingly coarse,
cf. the skull model. The implied parameterizations are highly

suitable for all types of mapping applications.

19
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Rendering Normal maps are a very powerful tool for
decoration and enhancement of otherwise smooth geometry. In
particular in the context of bandwidth bottlenecks it is
attractive to be able to download a normal map into hardware

5 and only send smooth coefficient updates for the underlying
geometry. The normal mesh transform effectively solves the
assoclated inverse problem: construct a normal map for a given
geometry.

Although only a few embodiments have been disclosed in detail

10 above, other modifications are possible.

P ot

20
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What is claimed is:

Attorney Docket No. 06618/580001

1. A method of compressing information indicative of a
three dimensional surface, comprising:

determining a function which approximates some aspect of
the surface; and

defining the surface in terms of one scalar per point

relative to said function.

2. A method as in claim 1, wherein said defining
comprises defining a coarse representation and subsequently
increasing a resolution of the coarse representation to a

finer representation.

3. A method as in claim 2, wherein coefficients of the

finer representation are all scalar functions.

4. A method as in claim 2, wherein coefficients of the
finer representation confine a residual area to a normal

direction of said surface.

5. A method as in claim 1, wherein said surface is

defined by a parametric function.

21
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6. A method as in claim 1, wherein

defined by a polyline.

7. A method as in claim 6, wherein

salid surface is

said polyline has a

normal component representing geometric information and a

tangent component representing parameter information.

8. A method as in claim 6, wherein
defined as a function such that it can be

scalar per point of the polyline.

9. A method as in claim 8, wherein

substantially normal to said surface.

106. A method as in claim 9, wherein

a isoceles triangle with neighboring line

11. A method as in claim 6, wherein

normal polyline to a surface.

12. A method as in claim 6, wherein

said polyline is

described as one

said polyline is

said polyline forms

segments.

said polyline is a

said polyline is an

approximation to a normal polyline to a surface.

22
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13. A method of compressing a representation of a
surface, comprising:

forming a plurality of triangles which are normal
triangles and which have vertices that are defined by a base
point in a normal direction; and

using said triangles to form a mesh that represents a

surface.

13. A method as in claim 12, wherein said mesh is
semiregular, having an connectivity formed by successive

quadrisection of coarse base domain phases.

14. A method of forming a model of a three dimensional
object, comprising:

forming a ccarsest version of the model;

forming a plurality of curves which do not intersect one
another, and which start and finish at vertices defining a
base domain;

determining non-normal vertices and repositioning said
vertices to maximize a number of normal vertices, and using

said information to form a normal mesh.

23
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ABSTRACT

A special set of normal meshes is defined where errors
and residuals will also be along a direction that minimizes
5 the error in coding. These normal meshes can be used to model

a three dimensional surface.
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